Search results for "Infrared fibers"

showing 2 items of 2 documents

Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers

2010

International audience; A theoretical investigation of an innovative cascade laser source is performed. The main goal of the work is the design of a continuous-wave (CW) photonic crystal fiber (PCF) laser, based on an erbium-doped chalcogenide glass. Due to the comparable lifetimes of the 4I13/2, 4I11/2 and 4I9/2 erbium energy levels, the simultaneous emissions at the wavelengths close to 2.7 μm and 4.5 μm are obtained with a pump wavelength close to 806 nm (direct pumping into the level 4I9/2). This scheme could be useful to develop high efficiency, high beam-quality and compact Near-IR and Mid-IR oscillators with single-mode output for applications not only in surgery but also in spectros…

Materials scienceOptical fiberOptical fiberGlass fiberInfrared fiberschemistry.chemical_elementChalcogenide glassPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsInorganic ChemistryErbiumOpticslaw0103 physical sciencesCascade lasersElectrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopybusiness.industryOrganic Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryRate equation021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsInfrared fibers; Optical fiber; Chalcogenides; Cascade laserschemistryCascade[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technologybusinessPhotonic-crystal fiberChalcogenides
researchProduct

Design of Er3+-doped chalcogenide glass laser for MID-IR application

2009

Abstract The feasibility of a photonic crystal fiber laser (PCF laser), made of a novel Er 3+ -doped chalcogenide glass and operating at the wavelength λ s  = 4.5 μm is investigated. The design is performed on the basis of spectroscopic and optical parameters measured on a fabricated Er 3+ -doped Ga 5 Ge 20 Sb 10 S 65 chalcogenide bulk sample. The simulations have been performed by employing a home made numerical code that solves the multilevel rate equations and the power propagation equations via a Runge-Kutta iterative method. The numerical results indicate that a laser exhibiting slope efficiency close to the maximum theoretical one and a wide tunability in the wavelengths range where t…

Optical fiberMaterials scienceChalcogenideInfrared fibersPhysics::OpticsChalcogenide glass02 engineering and technology01 natural sciences7. Clean energylaw.invention010309 opticschemistry.chemical_compoundOpticslaw0103 physical sciencesMaterials ChemistryOptical fibersChalcogenides; Infrared fibers; Lasers; Optical fibersbusiness.industryLasersSlope efficiencyDoping[CHIM.MATE]Chemical Sciences/Material chemistryRate equation021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserElectronic Optical and Magnetic Materialschemistry[ CHIM.MATE ] Chemical Sciences/Material chemistryCeramics and Composites0210 nano-technologybusinessChalcogenidesPhotonic-crystal fiberJournal of Non-Crystalline Solids
researchProduct